Researchers discover new 'GPS' neuron

An international research team led by the University of Amsterdam researchers Jeroen Bos, Martin Vinck and Cyriel Pennartz has identified a new type of neuron which might play a vital role in humans' ability to navigate their environments. The discovery is an important step towards understanding how the brain codes navigation behaviour at larger scales and could potentially open up new treatment strategies for people with impaired topographical orientation like Alzheimer's patients. The team's results are published in the latest edition of Nature Communications.

Building on current research, the researchers investigated how large scale navigational knowledge is coded within the brain and whether this process indeed occurs in different structures within the temporal lobe. They did this by training rats to perform a visually guided task in a figure-8 maze consisting of two loops that overlap in the middle lane. During the experiment, the researchers measured electrical activity in the brain by using a novel instrument which allowed the researchers to simultaneously record groups of neurons from four different areas. They recorded from the perirhinal cortex, hippocampus and two sensory areas. Recordings from the perirhinal cortex revealed sustained activity patterns. The level of electrical activity clearly rose and fell depending on the segment the rats were in and persisted throughout that entire segment.

In addition to offering new insights into brain mechanisms for spatial navigation at different scales, the results may guide patients with Alzheimer's or other diseases in using other spatial strategies than the ones most severely affected. The findings point to the perirhinal cortex as a target for treatment. Finally, research on neural replacement devices and assistive robots may benefit from this study.

Read more at Phys.org